منابع مشابه
Electronic band structure of a Carbon nanotube superlattice
By employing the theoretical method based on tight-binding, we study electronic band structure of single-wall carbon nanotube (CNT) superlattices, which the system is the made of the junction between the zigzag and armchair carbon nanotubes. Exactly at the place of connection, it is appeared the pentagon–heptagon pairs as topological defect in carbon hexagonal network. The calculations are base...
متن کاملElectronic band structure of a Carbon nanotube superlattice
By employing the theoretical method based on tight-binding, we study electronic band structure of single-wall carbon nanotube (CNT) superlattices, which the system is the made of the junction between the zigzag and armchair carbon nanotubes. Exactly at the place of connection, it is appeared the pentagon–heptagon pairs as topological defect in carbon hexagonal network. The calculations are base...
متن کاملelectronic band structure of a carbon nanotube superlattice
by employing the theoretical method based on tight-binding, we study electronic band structure of single-wall carbon nanotube (cnt) superlattices, which the system is the made of the junction between the zigzag and armchair carbon nanotubes. exactly at the place of connection, it is appeared the pentagon–heptagon pairs as topological defect in carbon hexagonal network. the calculations are base...
متن کاملElectronic band structure of calcium oxide
We have measured the bulk energy-momentum resolved valence band structure of calcium oxide by the means of electron momentum spectroscopy (EMS). We have extracted the band dispersions, bandwidths and inter-valance gap, electron momentum density (EMD) and density of occupied states (DOS) from the measured data. The experimental results are compared with theoretical band structure calculations pe...
متن کاملELECTRONIC BAND STRUCTURE AND SPECTROSCOPY OF PbWO4
Lead tungstate (PbWO4) crystallizes in the scheelite (CaWO4) structure, is transparent (Eg ≈ 4.2 eV), and has a broad intrinsic luminescence band at 420 nm. The high atomic numbers, high density, short electron and γ-ray stopping range, radiation hardness, and short lifetime of its intrinsic luminescence at room temperature (~10ns), have resulted in the selection of PbWO4 as the scintillator fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Physical Society of Japan
سال: 2008
ISSN: 0031-9015,1347-4073
DOI: 10.1143/jpsjs.77sa.193